MAX materials and MXene materials are new two-dimensional materials which have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and also have shown broad application prospects in lots of fields. The following is an in depth introduction to the properties, applications, and development trends of MAX and MXene materials.
What exactly is MAX material?
MAX phase material is really a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements in the periodic table, collectively known as “MAX phase”. M represents transition metal elements, such as titanium, zirconium, hafnium, etc., A represents the main group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the three elements of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they may be popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.
Properties of MAX material
MAX material is actually a new form of layered carbon nitride inorganic non-metallic material with all the conductive and thermal conductive qualities of metal, consisting of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A means the main-group elements, and X refers to the elements of C or N. The MXene material is actually a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX phases are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials make sure they are have a variety of applications in structural materials. For instance, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which could be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also found in functional materials. For example, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which can be used in energy materials. For instance, K4(MP4)(P4) is one in the MAX materials with higher ionic conductivity and electrochemical activity, which bring a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials certainly are a new form of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The top of MXene materials can interact with more functional atoms and molecules, and a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually range from the etching management of the MAX phase and also the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties like electrical conductivity, magnetism and optics can be realized.
Properties of MXene materials
MXene materials certainly are a new type of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, including high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and they are widely used in energy storage and conversion. As an example, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Additionally, MXene materials could also be used as catalysts in fuel cells to boost the action and stability from the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity may be used in electromagnetic protection. For instance, MXene materials can be used electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be used in sensing and detection. For instance, MXene materials bring gas sensors in environmental monitoring, which may realize high sensitivity and high selectivity detection of gases. Additionally, MXene materials may also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, using the continuous progress of technology and science and the improving demand for services for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will be further expanded and improved. The subsequent aspects could become the main focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and methods could be further explored to comprehend a far more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, however, there is still room for further optimization. Down the road, the composition, structure, surface treatment and other facets of the material could be studied and improved thorough to enhance the material’s performance and stability.
Application areas: MAX materials and MXene materials have been widely used in many fields, but you may still find many potential application areas to get explored. In the future, they may be further expanded, such as in artificial intelligence, biomedicine, environmental protection along with other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a wide application prospect in numerous fields. Using the continuous progress of science and technology and the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.